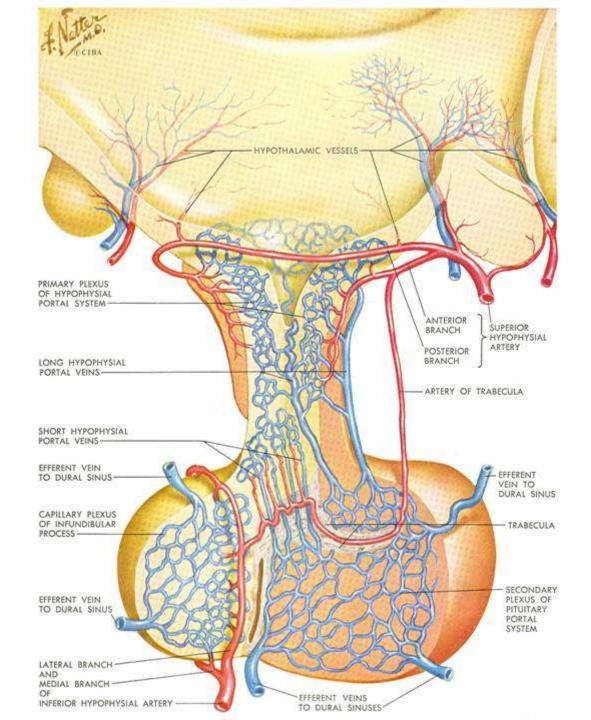
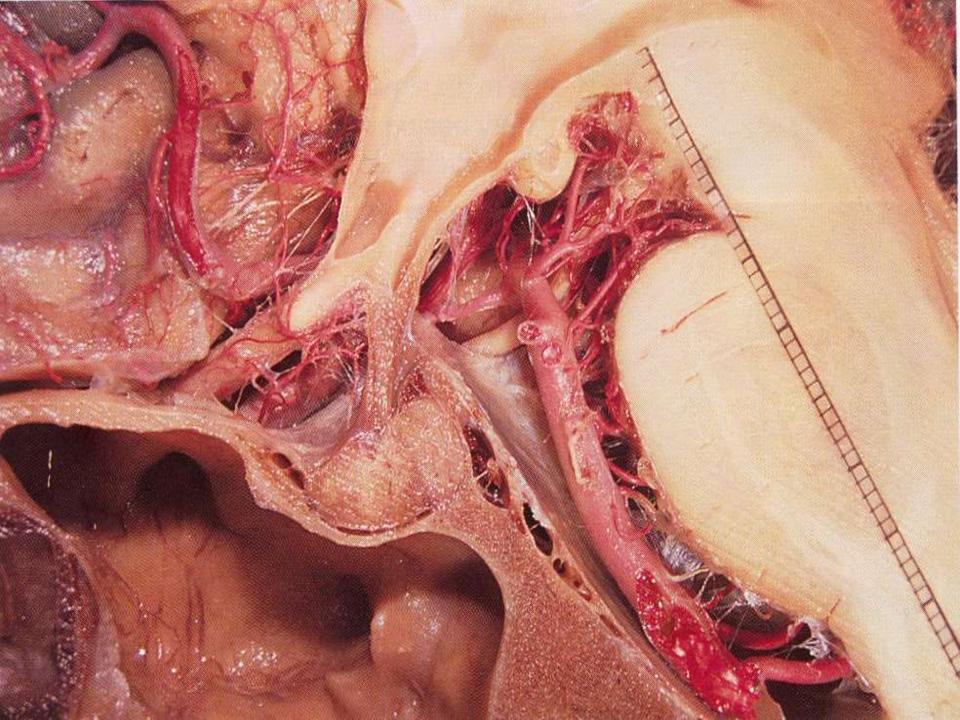
Endocrinology

Outline

- General Principles of Endocrinology
- Central Axis
 - **HPA**
- Peripheral Axis
 - Thyroid
 - Parathyroid
 - Adrenal
 - Gonadal
 - Gastrointestinal
- Disorders

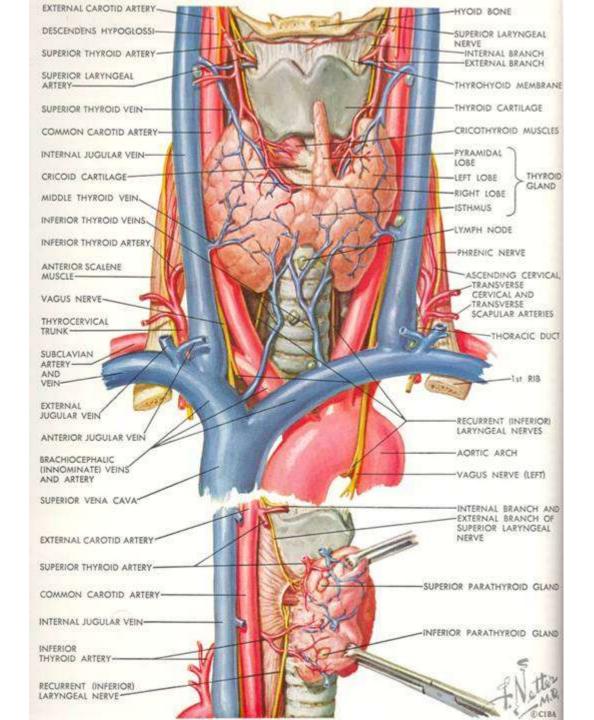



Hypophyseal-Pituitary Axis

- □ Site of Neural Hormonal interaction
- □ Sets temporal release of hormones
- Responsible for stress reaction of hormones

HPA Basics

- Hypophysis
 - Third Ventricle
 - GRH, TRH, CRH, GnRH, Dopamine, Somatostatin
- □ Neurohypophysis
 - Derived from Hypophysis
 - ADH, Oxytocin
- □ Adenohypophysis
 - Derived from Rathke's pouch
 - ACTH, LH, FSH, TSH, GH, PRL



Pituitary Diseases

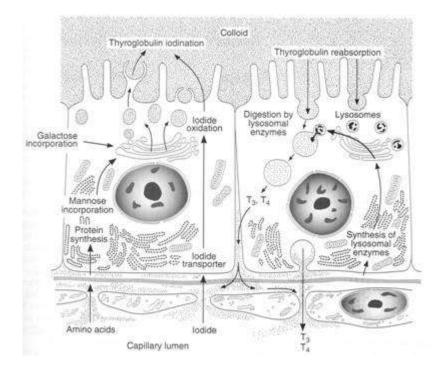
- Primary Tumors
 - Adenomas
 - Craniopharyngioma
- Metastasis
- □ Empty Sella
 - Surgical, post-Sheehand's
- □ Hemorrhage
 - Sheehand's syndrome
- □ Hyperfunction
 - Prolactin
- □ Insufficiency

Thyroid

Thyroid

- □ Largest Endocrine organ in the body
- Involved in production, storage, and release of thyroid hormone
- □ Function influenced by
 - Central axis (TRH)
 - Pituitary function (TSH)
 - Comorbid diseases (Cirrhosis, Graves, etc.)
 - Environmental factors (iodine intake)

Thyroid (cont)

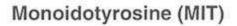

- Regulates basal metabolic rate
- Improves cardiac contractility
- □ Increases the gain of catecholamines
- □ Increases bowel motility
- □ Increases speed of muscle contraction
- Decreases cholesterol (LDL)
- □ Required for proper fetal neural growth

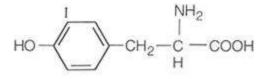
Thyroid Physiology

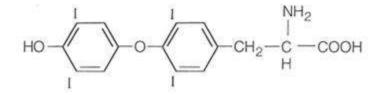
- □ Uptake of Iodine by thyroid
- Coupling of Iodine to Thyroglobulin
- □ Storage of MIT / DIT in follicular space
- Re-absorption of MIT / DIT
- □ Formation of T_3 , T_4 from MIT / DIT
- **\square** Release of T₃, T₄ into serum
- □ Breakdown of T_3 , T_4 with release of Iodine

Iodine uptake

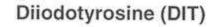
- Na⁺/I⁻ symport protein controls serum I⁻ uptake
- Based on Na⁺/K⁺
 antiport potential
- □ Stimulated by TSH
- Inhibited by Perchlorate

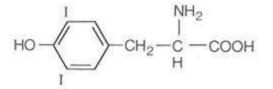

MIT / DIT formation

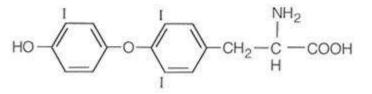

- □ Thyroid Peroxidase (TPO)
 - Apical membrane protein
 - Catalyzes Iodine organification to Tyrosine residues of Thyroglobulin
 - Antagonized by methimazole
- □ Iodine coupled to Thyroglobulin
 - Monoiodotyrosine (Tg + one I⁻)
 - Diiodotyrosine (Tg + two I⁻)
- □ Pre-hormones secreted into follicular space


Secretion of Thyroid Hormone

- □ Stimulated by TSH
- Endocytosis of colloid on apical membrane
- Coupling of MIT & DIT residues
 - Catalyzed by TPO
 - $\blacksquare MIT + DIT = T_3$
 - $\blacksquare DIT + DIT = T_4$
- Hydrolysis of Thyroglobulin
- **\square** Release of T₃, T₄
- Release inhibited by Lithium


Thyroid Hormones





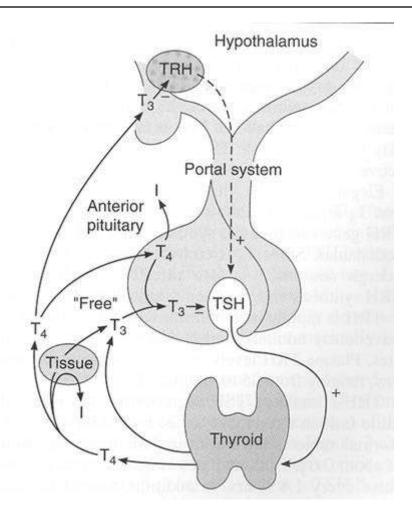
3,5,3',5' - Tetraiodothyronine (L-thyroxine) (T₄)

3,5,3' - Triiodothyronine (T₃)

Thyroid Hormone

- Majority of circulating hormone is T_4
 - □ 98.5% T₄
 - □ 1.5% T₃
- Total Hormone load is influenced by serum binding proteins (TBP, Albumin, ??)
 - □ Thyroid Binding Globulin 70%
 - □ Albumin 15%
 - □ Transthyretin 10%
- Regulation is based on the free component of thyroid hormone

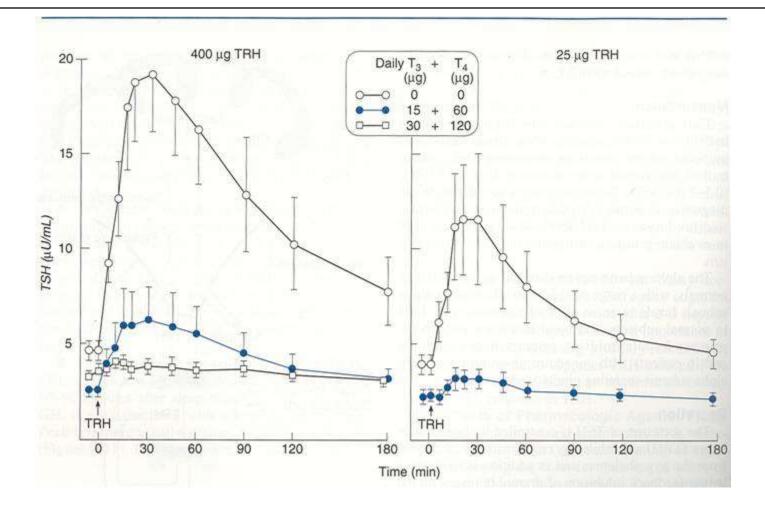
Hormone Binding Factors


- □ Increased TBG
 - High estrogen states (pregnancy, OCP, HRT, Tamoxifen)
 - Liver disease (early)
- Decreased TBG
 - Androgens or anabolic steroids
 - Liver disease (late)
- Binding Site Competition
 - NSAID's
 - Furosemide IV
 - Anticonvulsants (Phenytoin, Carbamazepine)

Hormone Degredation

- \Box T₄ is converted to T₃ (active) by 5' *deiodinase*
- \Box T₄ can be converted to rT₃ (inactive) by 5 *deiodinase*
- \Box T₃ is converted to rT₂ (inactive) by 5 *deiodinase*
- \Box rT₃ is inactive but measured by serum tests

Thyroid Hormone Control

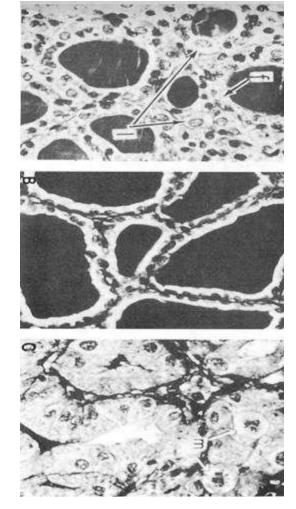

TRH

- Produced by Hypothalamus
- Release is pulsatile, circadian
- \square Downregulated by T₄, T₃
- Travels through portal venous system to adenohypophysis
- □ Stimulates TSH formation

TSH

- Produced by Adenohypophysis Thyrotrophs
- Upregulated by TRH
- **Downregulated by** T_4 , T_3
- Travels through portal venous system to cavernous sinus, body.
- □ Stimulates several processes
 - Iodine uptake
 - Colloid endocytosis
 - Growth of thyroid gland

TSH Response

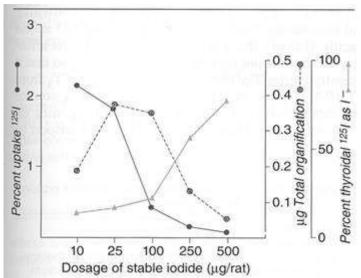

Thyroid Lab Evaluation

- □ TRH
- □ TSH
- \Box TT₃, TT₄
- \square FT₃, FT₄
- □ RAIU
- Thyroglobulin, Thyroglobulin Ab
- Perchlorate Test
- Stimulation Tests

RAIU

- Scintillation counter measures radioactivity 6 & 24 hours after I¹²³ administration.
- □ Uptake varies greatly by iodine status
 - Indigenous diet (normal uptake 10% vs. 90%)
 - Amiodarone, Contrast study, Topical betadine
- □ Symptomatic elevated RAIU
 - Graves'
 - Toxic goiter
- □ Symptomatic low RAIU
 - Thyroiditis (Subacute, Active Hashimoto's)
 - Hormone ingestion (Thyrotoxicosis factitia, Hamburger Thyrotoxicosis)
 - Excess I⁻ intake in Graves' (Jod-Basedow effect)
 - Ectopic thyroid carcinoma (Struma ovarii)

Iodine states

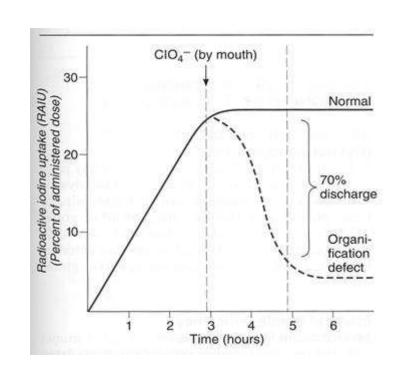

Normal Thyroid

□ Inactive Thyroid

□ Hyperactive Thyroid

Wolff-Chaikoff

- □ Increasing doses of I⁻ increase hormone synthesis initially
- Higher doses cause cessation of hormone formation.
- This effect is countered by the Iodide leak from normal thyroid tissue.
- Patients with autoimmune thyroiditis may fail to adapt and become <u>hypo</u>thyroid.



Jod-Basedow

- □ Aberration of the Wolff-Chaikoff effect
- Excessive iodine loads induce
 <u>hyper</u>thyroidism
- Observed in several disease processes
 - Graves' disease
 - Multinodular goiter

Perchlorate

- ClO₄⁻ ion inhibits the Na⁺ / I⁻ transport protein.
- Normal individuals show no leak of I¹²³ after ClO₄⁻ due to organification of I⁻ to MIT / DIT
- Patients with organification defects show loss of RAIU.
- Used in diagnosis of Pendred syndrome

Hypothyroid

- Symptoms fatigability, coldness, weight gain, constipation, low voice
- Signs Cool skin, dry skin, swelling of face/hands/legs, slow reflexes, myxedema
- Newborn Retardation, short stature, swelling of face/hands, possible deafness
- Types of Hypothyroidism
 - Primary Thyroid gland failure
 - Secondary Pituitary failure
 - Tertiary Hypothalamic failure
 - Peripheral resistance

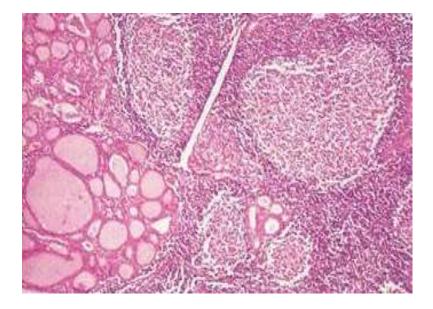
Hypothyroid

- Cause is determined by geography
- Diagnosis
 - Low FT₄, High TSH (Primary, check for antibodies)
 - Low FT₄, Low TSH (Secondary or Tertiary, TRH stimulation test, MRI)
- □ Treatment

Primary:

- 1. Hashimoto's thyroiditis:
 - a. With goiter.
 - b. "Idiopathic" thyroid atrophy, presumably end-stage autoimmune thyroid disease, following either Hashimoto's thyroiditis or Graves' disease.
 - Neonatal hypothyroidism due to placental transmission of TSH-R blocking antibodies.
- 2. Radioactive iodine therapy for Graves' disease.
- Subtotal thyroidectomy for Graves' disease or nodular goiter.
- 4. Excessive iodide intake (kelp, radiocontrast dyes).
- 5. Subacute thyroiditis.
- 6. Rare causes in the USA:
 - a. lodide deficiency.
 - b. Other goitrogens such as lithium; antithyroid drug therapy.
 - c. Inborn errors of thyroid hormone synthesis.

Secondary: Hypopituitarism due to pituitary adenoma,


pituitary ablative therapy, or pituitary destruction. Tertiary: Hypothalamic dysfunction (rare).

Peripheral resistance to the action of thyroid hormone.

- Levothyroxine (T_4) due to longer half life
- Treatment prevents bone loss, cardiomyopathy, myxedema

Hashimoto's (Chronic, Lymphocytic)

- □ Most common cause of hypothyroidism
- □ Result of antibodies to TPO, TBG
- □ Commonly presents in females 30-50 yrs.
- Usually non-tender and asymptomatic
- □ Lab values
 - High TSH
 - Low T_4
 - Anti-TPO Ab
 - Anti-TBG Ab
- □ Treat with Levothyroxine

Goiter

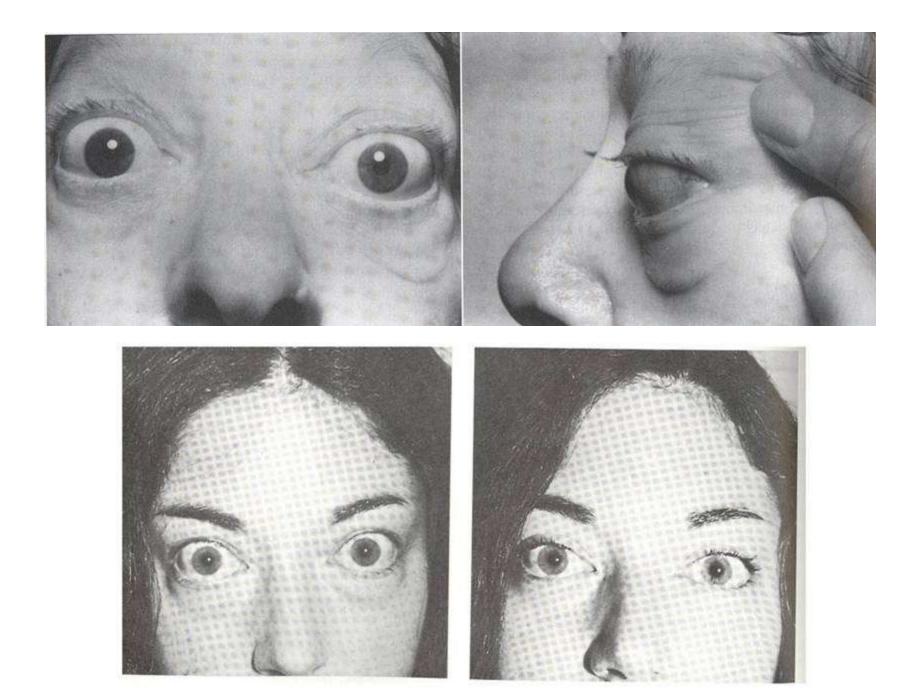
□ Endemic goiter

- Caused by dietary deficiency of Iodide
- Increased TSH stimulates gland growth
- Also results in cretinism
- □ Goiter in developed countries
 - Hashimoto's thryoiditis
 - Subacute thyroiditis
- □ Other causes
 - Excess Iodide (Amiodarone, Kelp, Lithium)
 - Adenoma, Malignancy
 - Genetic / Familial hormone synthesis defects

SOMATOM PLUS 4 VE20B H-SP-CR 9580424 A 13-MAR-1997 07:35:45.30 TP -252.5 IMA 27 SEQ 27 R kV 120 120 10.22

Hyperthyroid

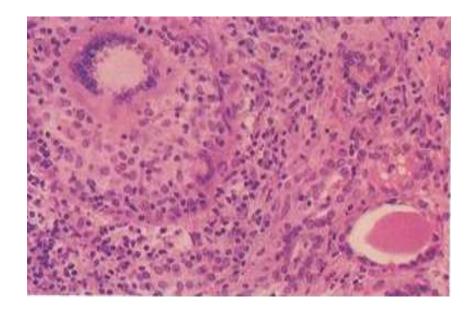
- Symptoms Palpitations, nervousness, fatigue, diarrhea, sweating, heat intolerance
- □ Signs Thyroid enlargement (?), tremor
- □ Lab workup
 - TSH
 - FT4
 - RAIU
- □ Other Labs
 - Anti-TSH-R Ab, Anti-TPO Ab, Anti-TBG Ab
 - FT3
 - FNA
 - MRI, US


Hyperthyroid

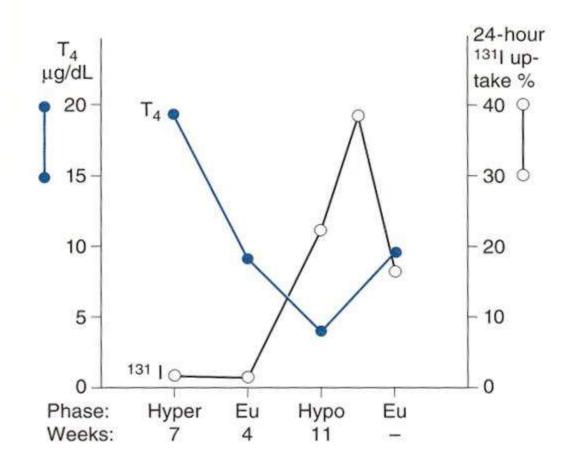
- Common Causes
 - *Graves
 - Adenoma
 - Multinodular Goiter
 - Subacute Thyroiditis
 - *Hashimoto's Thyroiditis
- □ Rare Causes
 - Thyrotoxicosis factitia, struma ovarii, thyroid metastasis, TSH-secreting tumor, hamburger

Graves

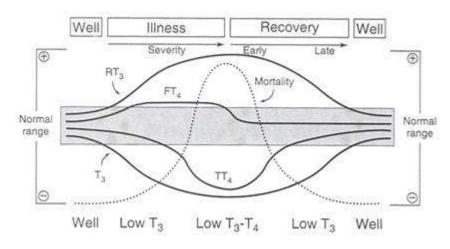
- □ Most common cause of hyperthyroidism
- □ Result of anti-TSH receptor antibodies
- Diagnosis
 - Symptoms of hyperthyroidism
 - Clinical exopthalmos and goiter
 - Low TSH, normal/high FT₄, anti-TSH Ab (Optional)
- □ If no clinical findings I^{123} may demonstrate increased uptake.
- □ Treatments
 - Medical Propothyouracil, Methimazole, Propranolol
 - Surgical Subtotal Thyroidectomy
 - Radiation RAI ablation $[I^{131}(\mu Ci/g) \times weight / \% RAIU]$



Subacute Thyroiditis


(DeQuervain's, Granulomatous)

- □ Acute viral infection of thyroid gland
- Presents with viral prodrome, thyroid tenderness, and hyperthyroid symptoms
- □ Lab values
 - Variable TSH, T_4
 - High ESR
 - No antibodies
- □ Treatment
 - APAP, NSAID
 - Prednisone (?)
 - Levothyroxine (?)


Subacute Thyroiditis

(DeQuervain's, Granulomatous)

Euthyroid Sick

- □ Results from inactivation of 5'-Deiodinase, resulting in conversion of FT_4 to rT_3 .
- Generally occurs in critically ill patients, but may occur with DM, malnutrition, iodine loads, or medications (Amiodarone, PTU, glucocorticoids)
- Treatment
 - Avoid above medications
 - Treat primary illness
 - T_3 , T_4 not helpful

Thyroid Storm

- □ Causes
 - Surgery
 - Radioactive Iodine Therapy
 - Severe Illness
- Diagnosis
 - Clinical tachycardia, hyperpyrexia, thyrotoxicosis symptoms
 - Labs (Low TSH, High T4, FT4)
- □ Treatment
 - Propranolol IV vs. Verapamil IV
 - Propylthiouracil, Methimazole
 - Sodium Iodide
 - Acetamenophen, cooling blankets
 - Plasmapheresis (rare)
 - Surgical (rare)

Calcium Regulation

Parathyroid

Calcium

- Required for muscle contraction, intracellular messenger systems, cardiac repolarization.
- Exists in free and bound states
 - Albumin (40% total calcium)
 - Phosphate and Citrate (10% total calcium)
- □ Concentration of iCa++ mediated by
 - Parathyroid gland
 - Parafollicular C cells
 - Kidney
 - Bone

Parathyroid Hormone

- Produced by Parathyroid Chief cells
- □ Secreted in response to low iCa^{++}
- Stimulates renal conversion of 25-(OH)D₃ to 1,25-(OH)₂D which increases intestinal Ca⁺⁺ absorption
- Directly stimulates renal Ca⁺⁺ absorption and PO₄³⁻ excretion
- □ Stimulates osteoclastic resorption of bone

Calcitonin

- Produced by Parafollicular C cells of Thyroid in response to increased iCa⁺⁺
- □ Actions
 - Inhibit osteoclastic resorption of bone
 - Increase renal Ca^{++} and PO_4^{3-} excretion
- Non-essential hormone. Patients with total thyroidectomy maintain normal Ca⁺⁺ concentrations
- Useful in monitoring treatment of Medullary Thyroid cancer
- □ Used in treatment of Pagets', Osteoporosis

Vitamin D

- □ Sources
 - Food Vitamin D_2
 - UV light mediated cholesterol metabolism $-D_3$
- Metabolism
 - D_2 and D_3 are converted to 25(OH)-D by the liver
 - 25(OH)-D is converted to $1,25(OH)_2$ -D by the Kidney
- □ Function
 - Stimulation of Osteoblasts
 - Increases GI absorption of dietary Ca⁺⁺

Hypocalcemia

Decreased PTH

- Surgery
- Hypomagnesemia
- Idiopathic

□ Resistance to PTH

- Genetic disorders
- Bisphosphonates
- Vitamin D abnormalities
 - Vitamin D deficiency
 - Rickets (VDR or Renal hyroxylase abnormalities)
- □ Binding of Calcium
 - Hyperphosphate states (Crush injury, Tumor lysis, etc.)
 - Blood Transfusion (Citrate)

Hypercalcemia

- □ Hyperparathyroidism
 - Primary, Secondary, Tertiary
 - MEN Syndromes
- □ Malignancy
 - Humoral Hypercalcemia
 - PTHrP (Lung Cancer)
 - Osteoclastic activity (Myeloma, Lymphoma)
- □ Granulomatous Diseases
 - Overproduction of $1,25 (OH)_2 D$
- □ Drug-Induced
 - Thiazides
 - Lithium
 - Milk-Alkali
 - Vitamin A, D
- □ Renal failure

Hypercalcemia

- □ Signs & Symptoms
 - Bones (Osteitis fibrosa cystica, osteoporosis, rickets)
 - Stones (Renal stones)
 - Groans (Constipation, peptic ulcer)
 - Moans (Lethargy, depression, confusion)
- Medical Treatment
 - SERM's (Evista)
 - Bisphosphonates (Pamidronate)
 - Calcitonin (for severe cases)
 - Saline diuresis
 - Glucocorticoids (for malignant/granulomatous diseases)
 - Avoid thiazide diuretics
- Surgical Treatment
 - Single vs. Double adenoma simple excision
 - Multiple Gland hyperplasia total parathyroid with autotransplant vs. $3\frac{1}{2}$ gland excision

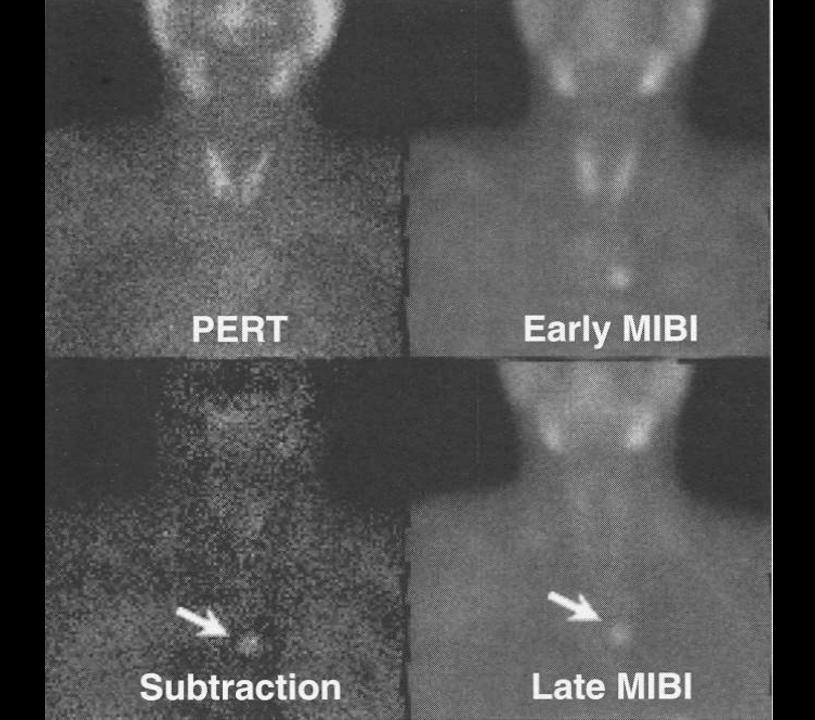
Primary Hyperparathyroidism

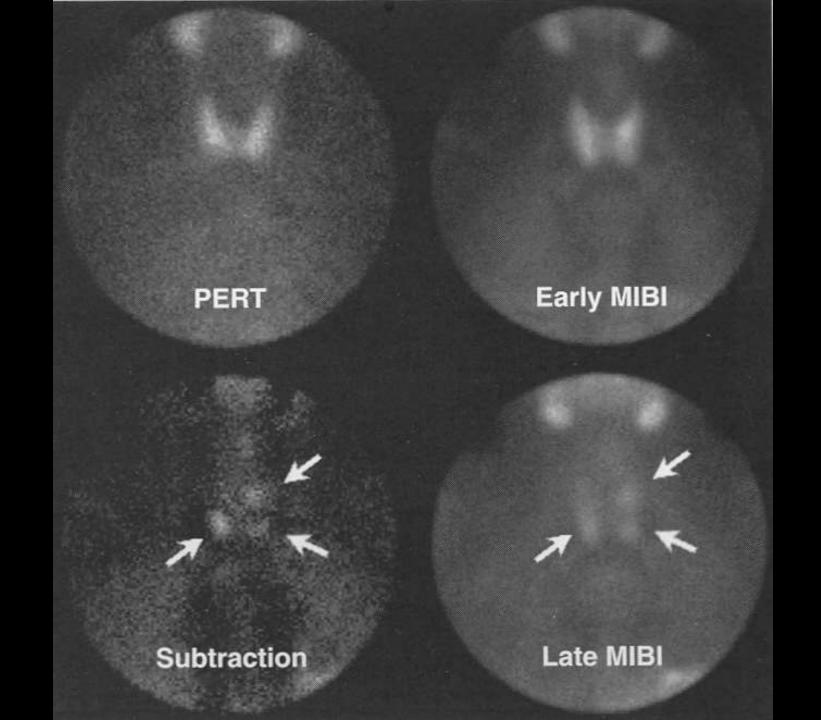
Diagnosis

- Signs & Symptoms
- Elevated serum calcium
- Elevated PTH
- Etiology
 - Solitary Adenoma (80-85%)
 - Double Adenomas (2-4%)
 - Muliple Gland Hyperplasia (10-30%)
 - Parathyroid Carcinoma (0.5%)
 - MEN syndromes (10% of MGH have MEN 1)

Multiple Endocrine Neoplasia

□ MEN 1


- Pituitary adenoma
- Pancreatic endocrine tumor
- Parathyroid neoplasia (90%)
- □ MEN 2a
 - Medullary thyroid cancer (100%)
 - Pheochromocytoma (50%)
 - Parathyroid neoplasia (10-40%)
- □ MEN 2b
 - Medullary thyroid cancer (100%)
 - Pheochromocytoma (50%)
 - Neuromas (100%)


Parathyroidectomy

- □ 1990 NIH Guidelines
 - Serum Ca++ > 12 mg/dl
 - Hypercalciuria > 400 mg/day
 - Classic symptoms
 - □ Nephrolithiasis
 - Osteitis fibrosa cystica
 - □ Neuromuscular disease
 - Cortical bone loss with DEXA Z score < -2
 - Reduced creatinine clearance
 - Age < 50
- □ Other considerations
 - Vertebral osteopenia
 - Vitamin D deficency
 - Perimenopause

Preoperative Localization

- □ Thallium / Pertechnetate
 - Based on subtraction of Tc 99 which concentrates only in thyroid from background Thallium which is absorbed by thyroid and parathyroid
 - Moderate sensitivity and specificity
 - Thyroid pathology reduces effectiveness
- □ Technetium 99m Sestamibi
 - Absorbed by thyroid and abnormal parathyroid
 - Early washout from thyroid leaves residual parathyroid signals in later images
 - Higher sensitivity and specificity
- □ Single Photon Emission Computed Tomography
 - Creates a three dimensional representation to allow for ectopic localization
 - Not commonly used

Intraoperative Hormone Assays

- Garner, S., Leight, G. *Surgery* 1999; 126: 1132-8.
 - Intraoperative PTH assays found highly sensitive for remaining disease (98.4%)
 - All cases of false positives were in multiple gland disease
 - The incidence of MGH was low in this study
- □ Weber, C., Ritchie, J. *Surgery* 1999; 126: 1139-44.
 - Intraoperative PTH assays work well in solitary adenomas
 - Multiple gland disease often gives false results due to "adenoma effect" of the dominant gland
 - Recomends bilateral exploration with any evidence of multiple gland disease

Bibliography

- Bailey, Byron J. <u>Head and Neck Surgery Otolaryngology</u>. Lippincott Williams & Wilkins. Baltimore, MD. 2001.
- □ Greenspan, Francis S.; Strewler, Gordon J. <u>Basic & Clinical</u> <u>Endocrinology</u>. Appleton & Lange. Stamford, Connecticut. 1997.
- □ Koos, W.T.; Spetzler, R.F. <u>Color Atlas of</u> <u>Microneurosurgery. Thieme</u>. New York, New York. 2000.
- Netter, Frank H. <u>The CIBA Collection of Medical</u> <u>Illustrations – Volume 4, Endocrine System and Selected</u> <u>Metabolic Diseases</u>. Ciba Pharmaceutical Company. New York, New York. 1970.
- Randolph, Gregory W. <u>Surgery of the Thyroid and</u> <u>Parathyroid Glands</u>. Saunders. Philadelphia, PA. 2003.

Bibliography

- Goretzki, P. E. et. al. "Management of Primary Hyperparathyroidism Caused by Multiple Gland Disease". *World Journal of Surgery*. 1991; 15: 693-7.
- Pattou, Francois. et. al. "Correlation of parathyroid scanning and anatomy in 261 unselected patients with sporadic primary hyperparathyroidism". *Surgery* 1999; 126: 1123-31.
- Jones, J. Mark. et. al. "Pre-operative Sestamibi-Technetium Subtraction Scintigraphy in Primary Hyperparathyroidism: Experience with 156 Consecutive Patients". *Clinical Radiology*. 2001; 56: 556-9.
- Berger, A. et. al. "Heterogeneous Gland Size in Sporadic Multiple Gland Parathyroid Hyperplasia." *Journal of the American College of Surgery*. 1999; 188: 382-9.

Bibliography

- □ Garner, Sanford; Leight, George. "Initial experience with intraoperative PTH determinations in the surgical management of 130 consecutive cases of primary hyperparathyroidism". *Surgery* 1999;126:1132-8.
- Weber, Collin; Ritchie, James. "Retrospective analysis of sequential changes in serum intact parathyroid hormone levels during conventional parathyroid exploration". *Surgery* 1999; 126: 1139-44.
- Libutti, Steven. et. al. "Kinetic analysis of the rapid intraoperative parathyroid hormone assay in patients during operation for hyperparathyroidism." *Surgery* 1999; 126: 1145-51.

Source from

- Alan L. Cowan, MD
- Francis B. Quinn, Jr, MD
- **November 2003**